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‡ Dipartmento di Fisica and INFN, Università di Roma, La Sapienza, P A Moro 2, 00185 Roma,
Italy

Received 11 November 1997

Abstract. We analyse the statistical physics of a two-dimensional lattice-based system with
long-range interactions. The particles interact in a way analogous to the queens on a chess
board. The long-range nature of the interaction gives the mathematics of the problem a simple
geometric structure which simplifies both the analytic and numerical study of the system. We
present some analytic calculations for the statics of the problem and we also perform Monte
Carlo simulations which exhibit a dynamical transition between a high-temperature liquid regime
and a low-temperature glassy regime exhibiting ageing in the two time-correlation functions.

1. Introduction

It is believed that one of the essential elements for the formation of a glassy phase is
the presence of frustration along with a large number of metastable states. The glass
transition is a dynamical one; if one considers ordinary glass one sees the glass phase
because on rapid cooling the system does not manage to find the crystalline structure of
silicon dioxide. Instead, the system becomes trapped on experimental timescales in a state of
higher energy than the crystalline state. This phase is characterized by very slow dynamics
and often exhibits ageing phenomena in many observable quantities such as the correlation
and response functions. A good introduction to the problem of the glass transition may
be found in [1]. Much of the understanding of glassy or out-of-equilibrium dynamics has
been made via analogy with the dynamics of spin glasses and other systems with quenched
disorder (for a review see [5]). Ideas from the theory of spin glasses have been tentatively
put forward to understand the glass transition [3]. In this paper we put forward a new model,
which we hope will be of use as a test of these ideas on systems without quenched disorder.
We will emphasize its attractiveness as a model from both analytic and simulational points
of view.

A well known puzzle to chess players is the eight queens problem. On a standard chess
board it may be summarized as the problem of arranging eight queens such that no queen
is in a position to take another queen at the next move. The interested reader will find that
it is a non-trivial task to find such an arrangement. In this paper we will analyse a model
based on the eight queens problem.

The attraction of this model is that the long-range nature of the interactions facilitates a
rather straightforward and efficient implementation of Monte Carlo dynamics for computer

0305-4470/98/173949+12$19.50c© 1998 IOP Publishing Ltd 3949



3950 D S Dean and G Parisi

simulations. In addition we shall see that, whilst we cannot solve the statics exactly, various
approximation schemes become analytically much simpler.

The space of the model is anN ×N lattice with periodic boundary conditions imposed
to facilitate analytic and numerical analysis; the original problem of course does not have
periodic boundary conditions. On this lattice areN particles, the energy of a given
configuration is given by the Hamiltonian

H =
N∑
i 6=j

δNxi ,xj + δNyi ,yj + δNxi−yi ,xj−yj + δNxi+yi ,xj+yj (1)

where the position of theith particle is denoted by the pair(xi, yi). The superscriptN on
δ indicates that they are the standard Kronecker delta functions but with arithmetic modulo
N . One can see that, for a periodic chess board, the solution of the eight queens problem
is given by the zero-energy configurations of the Hamiltonian system above. The first two
terms in the Hamiltonian represent the row and column constraints and the second two
represent the constraint on the left-to-right and right-to-left diagonals respectively.

In certain cases it is rather easy to find the zero-energy states of the system. Let us
consider the case whereN is prime. As an ansatz we shall take the configuration

xi = i and yi = pi (2)

for each i between 1 andN and where 0< p < N . Clearly the column constraint is
satisfied automatically. To violate the row constraint we would have to have

p(i − j) ≡ 0 (3)

where≡ will always be taken to indicate equality moduloN , the fact thatN is prime means
that this may only be satisfied wheni ≡ j . Violation of the first diagonal constraint would
mean that

(p − 1)(i − j) ≡ 0. (4)

This would imply thati ≡ j or p − 1 ≡ N . Violation of the second diagonal constraint
would imply

(p + 1)(i − j) ≡ 0 (5)

hence eitheri ≡ j or p + 1 ≡ 0. Therefore when one can findp such thatp + 1 and
p − 1 are not equal to zero moduloN , then the above construction does indeed give a
zero-energy state. This analysis therefore demonstrates the existence of zero-energy states
for all N primes strictly greater than 3.

This analysis is useful for our study of the dynamics; the ground states above are our
analogy of the crystalline state of silicon dioxide when comparison is made with real glass.

2. Mean-field analysis

The queen’s problem has a different algebraic structure depending on whether the lattice
sizeN is even or odd, in the following analysis we shall consider the caseN odd with the
algebra being simplified because, in this case, perpendicular diagonals intersect only once.
In the case whereN is even, perpendicular diagonals cross either twice or not at all. To
see this, without loss of generality, consider a diagonal(i, i) and a perpendicular diagonal
(j, c − j). At the intersection(s),i ≡ j and i ≡ c − j , hence 2i ≡ c. Consider now the
case whereN is odd: (1) if c is odd theni = N/2+ c/2 and is unique; ifc is even then
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i = c/2 and is unique. WhenN is even: (1) if c is odd then there is no solution and hence
no intersection; (2) ifc is even theni = N/2+ c/2 andi = c/2 are solutions.

One may carry out a geometrical mean-field Boltzmann-type analysis to determine the
energy per particle of the system. Consider the configuration about one particle at the point
O which is fixed. Ignoring the effects of correlations, the particle atO has two types
of sites surrounding it: those with which it interacts directly, i.e. those which are on the
same row, column or diagonal which we shall call typeA, and those with which it does
not interact directly which we shall call typeB. Denote byNX→Y the number of sites of
typeX that interact with a given particle on a site of typeY (X, Y ∈ {A,B,O}). Simple
counting yields

NO→A = 1, by definition

NA→A = N + 4, interaction withN − 2 on the line interacting withO

and intersection with 2A s on the 3 other lines

NB→A = 3N − 9, usingNO→A +NA→A +NB→A = 4N − 4

NO→B = 0, by definition

NA→B = 12, 4 lines with 3 intersections each

NB→B = 4N − 16, usingNO→A +NA→A +NB→A = 4N − 4. (6)

The Boltzmann equations for the average number of particles in sites of typesA andB are

〈A〉 = λ exp(−(N + 4)β〈A〉 − (3N − 9)β〈B〉 − β) (7)

and

〈B〉 = λ exp(−12β〈A〉 − (4N − 16)β〈B〉) . (8)

Hereλ is a Lagrange multiplier factor enforcing the overall particle number to beN , i.e.
so that

1+ 4(N − 1)〈A〉 + (N2− 4N + 3)〈B〉 = N (9)

which simplifies to

4〈A〉 + (N − 3)〈B〉 = 1. (10)

In the limit N →∞ one finds

〈B〉 = 1/N and 〈A〉 = a/N (11)

wherea is finite. Consequently

〈B〉 = λ
(

1− a

N
(1− e−β)

)12
×
(

1− 1

N
(1− e−β)

)4N−16

→ λ exp(−4(1− e−β))

= 1

N
. (12)

Hence

λ = 1

N
exp(−4(1− e−β)). (13)

Taking similarly the largeN limit for the equation for〈A〉 yields

a = exp((1− e−β)(1− a)− β) (14)
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and the energyE per particle is given by

E(β) = 2a(β). (15)

For infinite temperature one finds thatE(0) = 2 and for low temperaturesE(β) ∼ 2e1−β .
Hence, the mean-field calculation does not contradict the fact that there are zero-energy
ground states forN prime.

3. The hypernetted chain approximation

Perhaps one of the most successful approximations in gas and liquid theory is the hypernetted
chain (HNC) approximation [2], which is an integral equation which resums a certain class
of diagrams in the virial expansion. Normally this integral equation must be resolved
numerically and its resolution is rather difficult. However, we shall see here that for our
model the resulting equation is drastically simplified in the largeN limit.

The matrix form of the HNC equation is

log(1+ hij ) = −βVij + ρ
∑
k

hik(hkj − log(1+ hkj )− βVkj ) (16)

where

hij = 1

ρ2
(〈ρiρj 〉 − ρδij − ρ2). (17)

Here ρi is the density at the sitei and ρ = 〈ρ〉 in homogeneous systems. In this model
ρ = 1/N . One may write the interaction matrix as

Vij = 3δij +Wij . (18)

The important simplification comes from noting that (using the counting from the previous
section)

W 2 = (3N − 9)I + (N − 6)W + 12U (19)

whereI is the identity matrix andU is the matrix with each element equal to 1. Also

U2 = N2U and UW = WU = (4N − 3)U. (20)

Hence the elementsW, I,U, form a closed algebra. In general we may therefore represent
an element in this algebra by a triple

A ≡ (a1, a2, a3) = a3U + (a2− a3)W + (a1− a2)I (21)

where

Aij = a1 when i = j
Aij = a2 when i 6= j andVij = 1

Aij = a3 whenVij = 0. (22)

In this notation the product of two elementsA = (a1, a2, a3) andB = (b1, b2, b3) is given
by C = AB = (c1, c2, c3) where

c1 = a3b3N
2+ (a1− a2)(b1− b2)+ (a2− a3)(b2− b3)(4N − 3)+ (a3(b2− b3)

+b3(a2− a3))(4N − 3)+ (a3(b1− b2)+ b3(a1− a2))

+((a1− a2)(b2− b3)+ (b1− b2)(a2− a3)) (23)

c2 = a3b3N
2+ (a2− a3)(b2− b3)(N + 6)+ (a3(b2− b3)+ b3(a2− a3))(4N − 3)

+(a3(b1− b2)+ b3(a1− a2))+ ((a1− a2)(b2− b3)

+(b1− b2)(a2− a3)) (24)
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and

c3 = a3b3N
2+ 12(a2− a3)(b2− b3)+ (a3(b2− b3)+ b3(a2− a3))(4N − 3)

+(a3(b1− b2)+ b3(a1− a2)). (25)

Using this algebra and taking the limitN →∞ at the end of the calculation one finds that,
in this representation, the HNC reduces to

log(1+ h1) = −4β + 4h2
2+ h3− 7h2h3+ 3h2

3

1+ h2− h3
(26)

log(1+ h2) = −β + h
2
2− h2h3+ h3

1+ h2− h3
(27)

and

log(1+ h3) = h3. (28)

The final equation is trivial givingh3 = 0 and hence

h1 = exp

(
−4β + 4h2

2

1+ h2

)
− 1 (29)

with

log(1+ h2) = −β + h2
2

1+ h2
. (30)

Forβ small one findsh2 ∼ −β and forβ largeh2 ∼ −1+1/(β+2−log(β)+O(log(β)/β)).
The energy per particle is then given by

E = N

2

N2∑
i=1

〈ρ0ρi〉V0i = 2(h2+ 1). (31)

Hence, at high temperatures,E ∼ 2(1 − β) as in the mean-field calculation, butE ∼
2/(β + 2− log(β)+O(log(β)/β)) at low temperatures.

4. Monte Carlo simulation

The dynamics for the Hamiltonian (1) were simulated using a Monte Carlo method using the
Metropolis algorithm with sequential update on the particles. Two variants of the dynamics
have been analysed, first a non-local dynamics where a particle may move to any site on the
board and secondly a local random walk dynamics where a particle may move to any of its
eight nearest neighbours on the lattice. One of the advantages of the current model is that
the energy may be expressed as a function of the occupation numbers of each row (Nr(k)),
column (Nc(k)), left-to-right diagonal (Nd−(k)) and right-to-left diagonal (Nd+(k)). This
greatly speeds up the calculation of the energy change at each move. In this notation it is
easy to see that

E = 1

2N

N∑
k=1

(Nr(k)
2+Nc(k)2+Nd−(k)2+Nd+(k)2)− 2. (32)

This leads to a reduction by a factor ofN of the time needed to compute the energy change
with respect to a calculation using the particle positions. The form of the energy given by
equation (32) demonstrates that if one was to neglect the diagonal interactions one would
arrive at a model similar to two independent Backgammon models [4], but at negative
temperature. The Hamiltonian is not strictly the same but the tendency is to put all the
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particles in different boxes rather than to put them into a single box which is the ground
state of the Backgammon model. Here the free-energy barriers clearly have an energetic
component as opposed to the Backgammon model where their origin is entropic. We shall
also see later that, similarly to the Backgammon model, the dynamical transition temperature
appears to be atT = 0.

The system was started from a random initial configuration, thus simulating a rapid
quench from high temperature to the simulation temperature. In both cases of non-local and
local dynamics the energy as a function of time was measured.

In the case of non-local dynamics the particle–particle correlation function treating the
particles as distinguishable is measured; it is defined by

C(t, t ′) = 1

N

∑
i

δxi (t),xi (t ′)δyi (t),yi (t ′) (33)

note thatC is normalized to be one whent = t ′ (note that in keeping with convention,
t ′ will always denote the earlier time). In the case of local dynamics it is interesting to
measure the correlation function which gives us information about the effective particle
diffusivities, this correlation function is normally denoted byB(t, t ′) in the literature and is
given by

B(t ′t ′) = 1

N

∑
i

(xi(t)− xi(t ′))2. (34)

We shall discuss the results of the two dynamic types separately.

4.1. Non local dynamics

With non-local dynamics one expects, at an intuitive level, that the dynamics should be faster
and less prone to be glassy compared with local dynamics. If one imagines a self-consistent
picture of a non-ordered phase, then a single particle moves in a potential generated by the
other particles. When using non-local moves, trapping mechanisms at the spatial level are
less important.

The simulations we carried out were for systems of 50 000 particles and times of up
to 60 000 Monte Carlo sweeps through the entire system. In addition we verified that for
systems of size 48 611 (which is prime) the results were not significantly altered.

Figure 1 shows the results of the energy per particle measured by the simulation for
t = 30 000. Up to values ofβ = 5 we found that byt = 30 000 the energy density had
reached a well-defined asymptotic value. We found for values ofβ > 6 that att = 30 000
the system had not reached an asymptotic value of the energy density and that the value
of the energy density continued to decay very slowly. The values ofE, shown on figure 1
for β > 6, are the values measured att = 30 000 and are not equilibrium values. One
sees from figure 1 that betweenβ = 5 andβ = 6, the measured energy flattens off rather
suddenly in a fashion reminiscent of glassy systems. For values ofβ < 5 and a minimum
waiting time of 10 000 we found equilibrium behaviour for the correlation function. In this
region

C(t, t ′) = C(t − t ′) ≈ A exp

(
t − t ′
τ0

)
. (35)

One may regardτ0 as a characteristic timescale, if this timescale is greater than the
observation time then one should expect out of equilibrium behaviour. Figure 2 shows
a plot of log(τ0(β)) as measured by fitting the simulation data with formula (35). As one
can see, the plot is linear and the best fit isτ0(β) = 0.317· exp(1.796β); whenβ is such
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Figure 1. Non-local dynamics: dynamic energies forL = 50 000 att = 30 000. Calculated
static energies using the HNC and the mean-field approximation are also shown.

Figure 2. Non-local dynamics: logτ0(β) L = 50 000 (with linear fit shown).

that τ0(β) is much less than the age of the system one expects that equilibrium should be
achieved. For an age of the system of order 10 000 one finds that the value of the temperature
where the age andτ0(β) have the same age isβ ≈ 5.7 which is entirely consistent with the
plateau observed in the energy and with the breakdown of time translational invariance in
the correlation function.

For values ofβ > 6 we found that the functionC(t, t ′) was no longer time translational
invariant, neither did it have an exponential form. For values ofβ > 7 we found that to
a reasonable degree of accuracy the system exhibits perfect ageing, i.e.C(t, t ′) = f (t/t ′),
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Figure 3. Non-local dynamics:C(t, tw) plotted againstt/tw at β = 10 for tw = 5000, 10 000,
15 000, 20 000, 25 000 (L = 50 000).

Figure 4. Non-local dynamics:C(t, tw) plotted againstt/tw at T = 0 for tw = 20 000, 40 000,
60 000, 80 000, 100 000 (L = 50 000).

see for example the curves in figure 3 forβ = 10. At T = 0 one sees that the system also
ages and the five curves shown collapse onto the same master curve when plotted against
t/tw, this is shown in figure 4. Presumably this is because atT = 0 the characteristic time
τ0 becomes infinite and there is no interrupted ageing [6]. The scalingt/t ′ is observed in
a variety of mean-field models [7] and also in the phenomenological trap model [8]. The
improvement of the perfect ageing scaling as one approaches zero temperature was also
observed by Ritort [4] in Monte Carlo simulations of the Backgammon model.
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Figure 5. Local dynamics: dynamic energies forL = 50 000 att = 2000.

Finally, we mention here that in addition to simulations withN = 48 611 particles
we also carried out simulation withN = 5000 andN = 4999 particles to ensure that the
energy density approaches a well-defined largeN limit, thus justifying the restriction of our
analysis of sections 2 and 3 to the caseN odd.

4.2. Local dynamics

Here we consider the more physical situation of local random walk dynamics.
Figure 5 shows the energy measured for the local dynamics for a system of size 50 000

particles up to a time of 2000 Monte Carlo sweeps. Up toβ = 4 the energy reaches an
asymptotic value, where as forβ > 4 the energy continues to decrease. The values shown
in these cases are the minimum value of the energy attained. As one can clearly see from
the figure, this measured value is not monotonic and actually increases afterβ = 6.5. For
longer simulation times this minimum in the measured dynamic energy shifts towards larger
values ofβ.

For values of the waiting timet ′ = 10 000, 20 000, 30 000, 40 000 up toβ = 4 one sees
that

B(t, t ′) = κ(β)(t − t ′) (36)

and hence we are in an equilibrium phase for these temperatures and at this scale of age.
The values of log(κ(β)) are shown in figure 6; one sees that the curve is linear and one
finds thatκ(β) = 0.34× exp(−1.08β).

In the non-equilibrium regime we find that one may fit the curves as an anomalous
diffusion but with a prefactor that depends on the waiting time. The behaviour of the
particles is subdiffusive and we have fitted it with the form

B(t, t ′) = c(β)(t − t
′)α

t ′γ
(37)

whereγ = 2(1− α). This simple linear relation between the exponents for(t − t ′) and t ′

works rather well but we have no theoretical reason to expect this result. An example of
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Figure 6. Local dynamics:− log(κ(β) in the equilibrium regime (with linear fit shown).

Figure 7. Local dynamics: rescaledB(t + tw, tw) for tw = 10 000, 20 000, 30 000, 40 000 at
β = 6 with α taken to be 0.862.

the rescaled curves forβ = 6 is shown in figure 6. The values ofα as a function ofβ
are shown in figure 7. To reach lower values of the temperature than those shown is rather
difficult as the noise in the measured values ofB(t, t ′) becomes rather large, presumably
because one is approaching the zero-temperature transition.
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Figure 8. Local dynamics:α(β) in the non-equilibrium regime.

5. Conclusions

We have presented a preliminary study of a two-dimensional particle system which exhibits
a dynamical transition between a gas/liquid and a glassy phase. As expected from the
dynamical nature of the transition, the temperature at which one sees this transition is
dependent on both the timescale of the observations and on the nature of the dynamics.
The long-range nature of the interactions leads to a compact application of various standard
approximation schemes for the statics—particularly the HCA which works reasonably well
in the high-temperature phase. The model is also attractive from the simulation point of
view, as the form of the interactions leads to an efficient implication of the Monte Carlo
updating procedure.
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